# MOTION OF A SPHERICAL PISTON WITH CONSTANT VELOCITY IN AN INHOMOGENEOUS MEDIUM 

## (DVIZHENIE SFERICHESKOGO PORSHNIA S POSTOIANNOI SKOTOST'IU V NEODNORODNOI SREDE)

```
PMM Vol.24, No.5, 1960, pp. 919-922
            M. P. MIKHAILOVA
                            (Moscow)
(Received 7 October 1959)
```

We shall investigate the motion of the gas behind a spherical piston which moves with constant velocity in a medium where the density varies according to the law

$$
\begin{equation*}
\rho=\rho_{1}\left[1-\varepsilon z^{x}\right] \tag{1}
\end{equation*}
$$

where $z$ is a Cartesian coordinate, $\epsilon$ is a small parameter, $\rho_{1}$ and $\kappa$ are constants.

The analogous problem for a strong explosion was investigated by Karlikov [1]. We shall take spherical coordinates $r, \theta$ and $\phi$ in space. According to the conditions in the problem, the pressure $p$, density $\rho$, velocity components $v_{r}$ and $v_{\theta}$ and entropy $S$ do not depend on the coordinate $\phi$ and the velocity coordinate $v_{\phi}=0$. All these physical quantities are functions of the variables $t, r, \theta$ and of parameters $\rho_{1}, p_{1}, \epsilon, K$, $\gamma=c_{p} / c_{v}$. From these quantities we may form only three dimensionless variables

$$
\lambda=\frac{\gamma p_{1}}{\rho_{1}} \frac{t^{2}}{r^{2}}, \quad \mu=\varepsilon r^{x}, \quad \theta
$$

In this manner the desired dimensional functions may be represented in terms of dimensionless functions which depend upon the dimensionless variables

$$
\begin{align*}
v_{r}=\frac{r}{t} V_{r}^{\prime}(\lambda, \mu, \theta), & v_{\theta}=\frac{r}{t} V_{0}^{\prime}(\lambda, \mu, \theta), \\
p=\rho_{1}\left(\frac{r}{t}\right)^{2} P^{\prime}(\mu, \theta), & \rho=\rho_{1} R^{\prime}(\lambda, \mu, \theta) \tag{2}
\end{align*}
$$

The problem of the gas motion behind a piston moving with constant velocity in a homogeneous medium was solved by Sedov [2]. Let
$V_{0}(\lambda), P_{0}(\lambda), R_{0}(\lambda)$ be the solutions of this problem. Then we shall represent the desired linearized solutions in the form

$$
\begin{gather*}
V_{r}^{\prime}=V_{0}(\lambda)+V_{r}^{\circ}(\lambda, \theta), \quad V_{\theta}^{\prime}=\mu V_{\theta}^{0}(\lambda, \theta), \quad P^{\prime}=P_{0}(\lambda)+\mu P^{\circ}(\lambda, \theta), \\
R^{\prime}=R_{0}(\lambda)+\mu R^{\circ}(\lambda, \theta) \tag{3}
\end{gather*}
$$

The basic equations in spherical coordinates have the form

$$
\begin{gather*}
r^{2} \frac{\partial \rho}{\partial t}+\frac{\partial r^{2} \rho v_{r}}{\partial r}+\frac{r}{\sin \theta}-\frac{\partial \rho v_{\theta} \sin \theta}{\partial \theta}=0 \quad \frac{\partial S}{\partial t}+v_{r} \frac{\partial S}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial S}{\partial \theta}=0 \\
\frac{\partial v_{r}}{\partial t}+v_{r} \frac{\partial v_{r}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{r}}{\partial \theta}-\frac{r_{\theta}^{2}}{r}+\frac{1}{\rho} \frac{\partial p}{\partial r}=0  \tag{4}\\
\frac{\partial v_{\theta}}{\partial t}+v_{r} \frac{\partial v_{\theta}}{\partial r}+\frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta}+\frac{v_{\theta} v_{r}}{r}+\frac{1}{\rho r} \frac{\partial p}{\partial \theta}=0
\end{gather*}
$$

After transformation to the dimensionless variables and variation with respect to $\mu$ we obtain the system of partial differential equations for $V_{r}^{\circ}, V_{\theta}^{\circ}, P O, R^{\circ}$. This system of partial differential equations may be reduced to a system of ordinary differential equations if use is made of the Fourier method. We shall express the desired functions in the form

$$
\begin{gather*}
V_{r}^{\circ}=F(\theta) V_{r}(\lambda), \quad P^{\circ}=F(\theta) P(\lambda), \quad R^{\circ}=F(\theta) R(\lambda), \quad V_{\theta}^{\circ}=N(\theta) V_{\theta}(\lambda)  \tag{5}\\
\left(F(\theta)=P_{v}(\cos \theta), \quad N(\theta)=-\frac{1}{n^{2}} \frac{d P_{v}}{d \theta}\right)
\end{gather*}
$$

where $P(\cos \theta)$ is a Legendre polynomial and $\nu$ is an integer. If we assume that $V_{\theta}=n^{2} V^{(\nu)}(\lambda)$, then the solutions for ${ }^{\prime} V_{r}^{\circ}, p^{\circ}, R^{\circ}$ and $V_{\theta}^{o}$ may be looked for in the form of infinite series of the following form:

$$
\begin{array}{cc}
V_{r}^{\circ}=\sum_{\nu=0}^{\infty} P_{v}(\cos \theta) V_{r}^{(v)}(\lambda) & R^{\circ}=\sum_{v=0}^{\infty} P_{v}(\cos \theta) R^{(\nu)}(\lambda) \\
P^{\circ}=\sum_{v=0}^{\infty} P_{\nu}(\cos \theta) P^{(v)}(\lambda), & V_{\theta}^{\circ}=\sum_{v=0}^{\infty}(-1) \frac{d P_{v}}{d \theta} V_{\theta}^{(\nu)}(\lambda) \tag{6}
\end{array}
$$

We shall investigate the boundary conditions. At the piston the normal gas velocity is equal to the velocity of the piston $v_{r}=u$, and since ' $V_{0}=1$, then $V_{r}\left(\lambda_{n}\right)=0 ; \lambda_{n}$ is the value of $\lambda$ on the piston and $u$ is the velocity of the piston.

At some distance in front of the piston there is a shock-wave. To simplify the problem we shall assume that the velocity of the piston is large and the conditions at the shock-wave will be accounted for in the form

$$
\begin{equation*}
v_{2}=\frac{2}{\gamma+1} c, \quad \rho_{2}=\frac{\gamma+1}{\gamma-1} \rho, \quad p_{2}=\frac{2}{\gamma+1} \rho c^{2} \tag{7}
\end{equation*}
$$

where $c$ is the velocity of the shock-wave.
The conditions at the shock-wave after transformation to dimensionless variables and after variation with respect to $\mu$ have the form

$$
\begin{gather*}
V_{r 2}{ }^{\circ}\left(\lambda^{*}, \theta\right)=2\left[\frac{\alpha+1}{\gamma+1}-V_{0}\left(\lambda^{*}\right)+2 \lambda^{*}\left(\frac{d V_{0}}{d \lambda}\right)_{\lambda=\lambda^{*}}\right] f(\theta) \\
V_{\theta 2}{ }^{\circ}\left(\lambda^{*}, \theta\right)=-\frac{2}{\gamma+1} f^{\prime}(\theta)  \tag{8}\\
R_{2}{ }^{\circ}\left(\lambda^{*}, \theta\right)=2 \lambda^{*}\left(\frac{d R_{0}}{d \lambda}\right)_{\lambda=\lambda^{*}} \quad f(\theta)-\frac{\gamma+1}{\gamma-1} \cos ^{\kappa} \theta \\
P_{2}{ }^{\circ}\left(\lambda^{*}, \theta\right)=\left[4 \frac{\alpha P_{0}}{\gamma+1}-2 P_{0}\left(\lambda^{*}\right)+2 \lambda^{*}\left(\frac{d P_{0}}{d \lambda}\right)_{\lambda=\lambda^{*}}\right] f(\theta)-\frac{2}{\gamma+1} \cos ^{\kappa} \theta
\end{gather*}
$$

where $\lambda^{*}$ is the value of $\lambda$ at the shock-wave. The radius vector $r_{2}$ of the shock-wave will be represented in the form

$$
\begin{equation*}
r_{2}=r_{20}\left[1+\mu^{*} f(\theta)\right] \tag{9}
\end{equation*}
$$

where $\mu^{*}=\epsilon r_{20}{ }^{K}$ and $f(\theta)$ is an unknown function. As is well known, for automodel motion' $V_{0}(\lambda), P_{0}(\lambda), R_{0}(\lambda)$ cannot be expressed in analytical form. After transformation to the independent variable' $V_{0}$ we find an approximate solution by expanding the desired functions in powers of $\left(1-V_{0}\right)$

$$
\begin{gather*}
\lambda=\lambda_{00}\left[1-\frac{2}{3}\left(1-V_{0}\right)+\cdots\right], \quad P_{0}=P_{00}\left[1-\frac{2}{3}\left(1-V_{0}\right)+\cdots\right] \\
R_{0}=R_{00}\left[1+\frac{1}{3}\left(1-V_{0}\right)^{2}+\cdots\right] \tag{10}
\end{gather*}
$$

where $\lambda_{00}, P_{00}$ and $R_{00}$ are the values of the functions on the piston. The system of ordinary differential equations for the functions ' $V_{r}{ }^{(\nu)}\left(V_{0}\right)$, $p^{(\nu)}\left(V_{0}\right), R^{(\nu)}\left(V_{0}\right), V_{\theta}^{(\nu)}\left(V_{\theta}\right)$ has a singular point at $V_{0}=1$. We shall look for the solutions in the form of series of powers of ( $1-V_{0}$ ):

$$
\begin{gather*}
V_{r}^{(\nu)}=\left(1-V_{0}\right)^{s} \sum_{n=0}^{\infty} a_{n i}^{(\nu)}\left(1-V_{0}\right)^{n}, \\
R^{(\nu)}=\left(1-V_{0}\right)^{s} \sum_{n=0}^{\infty} c_{n i}^{(\nu)}\left(1-V_{0}\right)^{n}  \tag{11}\\
P^{(\nu)}=\left(1-V_{0}\right)^{s} \sum_{n=0}^{\infty} b_{n i}{ }^{(\nu)}\left(1-V_{0}\right)^{n},
\end{gather*} V_{\theta}^{(\nu)}=\left(1-V_{0}\right)^{s} \sum_{n=0}^{\infty} d_{n i}^{(\nu)}\left(1-V_{0}\right)^{n}, ~ l
$$

The characteristic equation of the system will be the following:

$$
\begin{equation*}
s^{2}\left[\frac{1}{2} \frac{\varkappa}{\lambda_{n}}\left(\frac{d \lambda}{d V_{0}}\right)_{V_{0}=1}-s\right]\left[\frac{\kappa+1}{2 \lambda_{n}}\left(\frac{d \lambda}{d V_{0}}\right)_{V_{0}=1}-s\right]=0 \tag{12}
\end{equation*}
$$

The roots of this equation, if (10) is taken into account, have the following values:

$$
s_{1}=0, \quad s_{2}=0, \quad s_{3}=\frac{1}{3} x, \quad s_{4}=\frac{1}{3}(x+1)
$$

The roots $s_{1}$ and $s_{2}$ denote the solutions with a logarithmic singularity [3]. If $s_{3}$ and $s_{4}$ are not integers, the solutions for $V_{r}{ }^{(\nu)}, p^{(\nu)}$, $n^{(\nu)}, V_{\theta}^{(\nu)}$, neglecting $\left(1-V_{0}\right)^{2}$, may be represented in the following form:

$$
\begin{gather*}
V_{r}^{(v)}=\frac{b_{01}{ }^{(v)}}{3 \gamma P_{00}}\left[x+\frac{v(v+1) \gamma P_{00}}{(x+1) R_{00}}\right]\left(1-V_{0}\right)\left[-\ln \left(1-V_{0}\right)\right]- \\
-\frac{v(v+1)}{x+4} d_{04}^{(v)}\left(1-V_{0}\right)^{(x+4) / 3}  \tag{13}\\
P^{(v)}=b_{01}^{(v)}\left\{\left[1-\frac{x+2}{3}\left(1-V_{0}\right)\right]\left[\ln \left(1-V_{0}\right)+1\right]+\frac{6+x}{3}\left(1-V_{0}\right)\right\} \\
R^{(v)}=\frac{R_{00}}{\gamma P_{00}} b_{01}^{(\nu)}\left\{\left[1-\frac{x}{3}\left(1-V_{0}\right)\right]\left[\ln \left(1-V_{0}\right)+1\right]+\frac{3 x+12}{(3-x)}\left(1-V_{0}\right)\right\}+ \\
+c_{03}^{(v)}\left(1-V_{0}\right)^{x / 3} \\
+
\end{gather*}
$$

where the condition at the piston is already accounted for. The unknown constants $d_{04}^{(\nu)}, c_{03}^{(\nu)}, b_{01}^{(\nu)}$ are determined from the conditions at the shock-wave. In the case $k=1$ the solutions are as follows:

$$
\begin{gather*}
v_{r}=\frac{r}{t}\left[V_{0}+\mu\left\{\frac{b_{01}{ }^{(1)}}{3 \gamma P_{00}}\left(1+\frac{\gamma P_{00}}{R_{00}}\right)\left(1-V_{0}\right)\left[-\ln \left(1-V_{0}\right)\right]-\frac{2}{5} d_{04}^{(1)}\left(1-V_{0}\right)^{5 / 2}\right\} \cos \theta\right] \\
\left.v_{\theta}=\frac{r}{t} \mu\left[\frac{b_{00}^{(1)}}{2 R_{00}}\left\{V_{0}\right) \ln \left(1-V_{0}\right)+1+4\left(1-V_{0}\right)\right\}+d_{04}^{(1)}\left(1-V_{0}\right)^{2 / 2}\left[1-\frac{1}{3}\left(1-V_{0}\right)\right]\right] \sin \theta \\
p=\rho_{1}\left(\frac{r}{t}\right)^{2}\left\{P_{00}\left[1-\frac{2}{3}\left(1-V_{0}\right)\right]+\mu b_{01}^{(1)}\left[V_{0} \ln \left(1-V_{0}\right)+1+\frac{4}{3}\left(1-V_{0}\right)\right] \cos \theta\right\}(14)  \tag{14}\\
\rho=\rho_{1}\left[R_{00}+\mu\left(\frac{b_{01}(1)}{\gamma R_{00}}\left\{\left[1-\frac{1}{3}\left(1-V_{0}\right)\right] \ln \left(1-V_{0}\right)+1+\frac{13}{6}\left(1-V_{0}\right)\right\}+\right.\right. \\
\left.\left.+c_{03}^{(1)}\left(1-V_{0}\right)^{1 / 3}\right) \cos \theta\right] \\
r_{2}=r_{20}\left[1+\mu^{*} c_{1} \cos \theta\right]
\end{gather*}
$$

In the case $\kappa=2$ the root $s_{4}$ will be an integer. In that case

$$
\begin{gather*}
V_{r}^{(v)}=\frac{b_{01}^{(v)}}{3 \gamma P_{00}}\left[-2+\frac{v(v+1)}{3} \frac{\gamma P_{00}}{R_{00}}\right]\left(1-V_{0}\right)\left[-\ln \left(1-V_{0}\right)\right] \\
p^{(v)}=b_{01}{ }^{(v)}\left\{\left[1-\frac{4}{3}\left(1-V_{0}\right)\right] \ln \left(1-V_{0}\right)+1+\frac{4}{3}\left(1-V_{0}\right)\right\} \\
R^{(v)}=\frac{b_{01}{ }^{(v)} R_{00}}{\gamma P_{00}}\left\{\left[1-\frac{2}{3}\left(1-V_{0}\right)\right] \ln \left(1-V_{0}\right)+\right. \\
\left.+\frac{16}{3}\left(1-V_{0}\right)\right\}+c_{03}^{(v)}\left(1-V_{0}\right)^{2 / 2}  \tag{15}\\
V_{\theta}^{(v)}=\left[\frac{b_{01}^{(v)}}{3 R_{00}}+d_{11}^{(v)}\left(1-V_{0}\right)\right]\left[1+\ln \left(1-V_{0}\right)\right]
\end{gather*}
$$



Fig. 1.


Fig. 2.

The final formulas for the solution will have the following form:

$$
\begin{aligned}
& v_{r}=\frac{r}{t}\left\{V_{0}+\mu\left[\frac{b_{01}{ }^{(0)}}{3 \gamma P_{00}}\left(2 \frac{\gamma P_{0 n}}{3 R_{0 n}}\right)+\frac{b_{01}{ }^{(2)}}{3 \gamma P_{0 n}}\left(1+\frac{\gamma P_{00}}{R_{00}}\right)\left(3 \cos ^{2} \theta-1\right)\right] \times\right. \\
& \left.\times\left(1-V_{0}\right)\left[-\ln \left(1-V_{0}\right)\right]\right\} \\
& v_{\theta}=\frac{r}{t} \mu\left[\frac{b_{01}{ }^{(2)}}{3 R_{00}}+d_{11}{ }^{(2)}\left(1-V_{0}\right)\right] 3 \cos \theta \sin \theta\left[\ln \left(1-V_{0}\right)+1\right] \\
& p=\rho_{1}\left(\frac{r}{t}\right)^{2}\left(P_{00}\left[1-\frac{2}{3}\left(1-V_{0}\right)\right]+\mu\left[b_{01}^{(0)}+\frac{1}{2} b_{01}^{(2)}\left(3 \cos ^{2} \theta-1\right)\right] \times\right. \\
& \left.\times\left\{\left[1-\frac{4}{3}\left(1-V_{0}\right)\right] \ln \left(1-V_{0}\right)+1+\frac{4}{3}\left(1-V_{0}\right)\right\}\right) \\
& \rho=\rho_{1}\left(R_{0 n}+\mu \frac{R_{00}}{\gamma P_{00}}\left[b_{01}{ }^{(0)}+\frac{1}{2} b_{01}{ }^{(2)}\left(3 \cos ^{2} \theta-1\right)\right] \times\right. \\
& \times\left\{\left[1-\frac{2}{3}\left(1-V_{0}\right)\right] \ln \left(1-V_{0}\right)+1+\frac{16}{3}\left(1-V_{0}\right)\right\}+ \\
& +\mu\left\{\left[c_{03}{ }^{(0)}+\frac{1}{2} c_{03}{ }^{(2)}\left(3 \cos ^{2} \theta-1\right)\right]\left(1-V_{0}\right)^{2 / 3}\right) \\
& r_{2}=r_{20}\left\{1+\mu^{*}\left[c_{0}+\frac{1}{2} c_{2}\left(3 \cos ^{2} \theta-1\right)\right]\right\}
\end{aligned}
$$

Results of the calculation of $v_{r}{ }^{\circ}$ as a function of $\lambda / \lambda_{n}$ for $\theta=0$ and $V_{\theta}{ }^{\circ}$ for $\theta=45^{\circ}$ are presented in the form of graphs in Fig. 1; Fig. 2
shows the variation of $R$ by solid lines and that of $p$ by dashed lines.

## BIBLIOGRAPHY

1. Karlikov, V.P., Reshenie linearizirovannoi osesimmetrichnoi zadachi o tochechnom vzryve $v$ srede $s$ peremennoi plotnostiu (Solution of the linearized axisymmetrical problem of point explosion in a medium with variable density). Dokl. Akad. Nauk SSSR Vol. 101, No. 6, 1955.
2. Sedov, L. E., Metody podobiia i pazmernosti v mekhanike (Methods of Similarity and Measurements in Mechanics). Gostekhizdat, 1957.
3. Piaggio, Integrirovanie differentsial'nykh uravnenii (Integration of Differential Equations). GTTI, 1933.

Translated by J.R.W.

