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We shall investigate the motion of the gas behind a spherical piston 
which moves with constant velocity in a medium where the density varies 
according to the law 

p = p1 [I - &?I (1) 

where z is a Cartesian coordinate, E is a small parameter, ~1 and K are 
constants. 

The analogous problem for a strong explosion was investigated by 
Karlikov [ 1 ] ‘ We shall take spherical coordinates r, 8 and 4 in space. 
According to the conditions in the problem, the pressure p, density p, 
velocity components vr and ve and entropy S do not depend on the coordi- 

nate q!~ and the velocity coordinate v +, = 0. All these physical quantities 

are functions of the variables t, rr 8 and of parameters pl, pl, 6, K, 

y=c/c p v. Prom these quantities we may form only three dimensionless 

variables 

In this manner the desired dimensional functions may be represented 
in terms of dimensionless functions which depend upon the dimensionless 
variables 

VP = f V,’ (A, p, (31, vf) = + V,’ (h, p. e), 

p = Pl($)” P’ (IL e), p = Pl R’ (h, f-b e) (2) 

The problem of the gas motion behind a piston moving with constant 
velocity in a homogeneous medium was solved by Sedov [ 2 1. Let 
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vow. P,(X), R()(U be the solutions of this problem. Then we shall re- 

present the desired linearized solutions in the form 

V,‘=v,(h)+v,” (a, e), V,‘= pveo (h,0), P' = P, (h) + pP” (a, 8), 

R’ = R, (h) + pR”(h, 9) (3) 

The basic equations in spherical coordinates have the form 
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(4) 

After transformation to the dimensionless variables and variation with 

respect to ~1 we obtain the system of partial differential equations for 

‘vp, ‘Ve”, P; RO. This system of partial differential equations may be 

reduced to a system of ordinary differential equations if-use is made of 

the Fourier method. We shall express the desired functions in the form 

vro = F (8) v, (a), P” = F (e) p (a), R" = F (0) R (A), v,~=we)v, (a) (5) 

F (0) = p, (cos e), N (0) =- sd& 

where P (cos 8) is a Legendre polynomial and v is an integer. If we 

assume that Ve = n V 2 (v)(x) then the solutions for ‘Vro, PO, R” and ‘Vso , 
may be looked for in the form of infinite series of the following form: 

vro = 5 P, (COS 0) v:)(a) R” = ; P, (cos 0) R(“) (A), 
v=o v=o 

PO = $j p, (C~S 0) P(V) (a), V,” = f$ (- 1) ‘2 V,(V) (a) (6) 
v=o v=o 

We shall investigate the boundary conditions. At the piston the normal 

gas velocity is equal to the velocity of the piston ur = u, and since 

‘V, = 1, then ‘Vr(xn) = 0; An is the value of x on the piston and u is the 

velocity of the piston. 

At some distance in front of the piston there is a shock-wave. To 

simplify the problem we shall assume that the velocity of the piston is 

large and the conditions at the shock-wave will be accounted for in the 

form 

2 r+i 2 
v2 = 7+1c. p2= T_-1 P* Pz =T + 1 PC2 
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where c is the velocity of the shock-wave. 

The conditions at the shock-wave after transformation to dimensionless 

variables and after variation with respect to p have the form 

VraO (IL*, 0) = 2 
[ 
s - V, (a*, + 2h * ($,,=,.] f (0) 

v,, “(h*,0) = - &IS (0) 

Rz”(h*, O)= 2h* % 
( 1 

A=A’ f (0) - s co? cl 

Pz” Ia*, e) = 4 
c 

(8) 

where A’ is the value of x at the shock-wave. The radius vector r2 of the 

shock-wave will be represented in the form 

r2 = rzo 11 + PC* f (0)l (9) 

where p* = 6 r20K and f(f?) is an unknown function. As is well known, for 

automodel motion ‘V,(x), P,(x), R,,(x) cannot be expressed in analytical 

form. After transformation to the independent variable’vu we find an 

approximate solution by expanding the desired functions in powers of 

(1 -‘Vu) 

jl = A00 [ 1 - + (1 - V,) + . .I, PO = PO0 [ 1 - $ (1 - V,) + . . .] 

I?, = R,, [l + $ (1 - Vo)2 + . . .] (10) 

where h ,,e, P 00 and Roe are the values of the functions on the piston. The 

system of ordinary differential equations for the functions’Vr(Y)(V ), 

P(Y)(V,), R(Y)(VO), Vg(“) (V,) has a singular point at ‘V. = 1. We shill 

look for the solutions in the form of series of powers of (1 -‘Vo): 

T/J”) = (1 - V,)S 5 a,J”) (I- Vi))“, R(“) = (1 - Vo)s ; cc’ (1 -V,)” 

n=o n=o 

PC”) = (1 - voy ; b,,(“) (1 - v,p, I’,(“)= (1 - Vo)s 5 d,i(“) (1 - Vo)” (11) 
n=o n=o 

The characteristic equation of the system will be the following: 

(12) 

The roots of this equation, if (10) is taken into account, have the 

following values: 

S1 = 0, .sz = 0, s3 = $t, sq = $ (x + 1) 
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The roots s1 and s2 denote the solutions with a logarithmic singular- 
ity [ 3 I m If s3 and s4 are not integers, the solutions for ‘V (u), Ptv), 
fi(“f , ‘ip), neglecting (1 - ’ V,)? may be represented in the hollowing 
form: 

bo, QJ) v,(v) = - L v (y -I- 1Yrpoo 
3v0, x + (x. + 1) RNI I 

(1 - V,)[ -In(l -V,)]-- 

_yW+1) 
x+4 

&*W (1 - &)(x+4):3 (13) 

pW = bol(‘) 
{iI 

1 _q2_ (1 - VO)]kn (1 - V,) + I]+ ‘+ (1 - VO)> 

R(“) = go bOl(Y) 1.1 - % (1 .- VO)] [In(l -V,) i- 1 j, ;z; (1 _ &)} + 

+ c*p (1 - V$+ 

v,(v) = 
bo,(“) ’ 

R,, (x f 1) a I - %*(I - vojj[ h (1 - v,) + ij+ 
+ g : ;) (1 - v,,i + do*(“f (1 - vo)fX+.1)/3 [1 - -+ (1 - V,)] 

where the condition at the piston is already accounted for. The unknown 
(v) (v) constants de4 , co3 , b,, (v) are determined from the conditions at 

the shock-wave. In the case K = 1 the solutions are as follows: 

v, = +A ‘$ {V,) In (1 -Vv,) +I f 4(?-li,)}+d 
i 

I’=P1(~~{~oo[l-~~(l--vo)] +G 01(l) [ I’, In (1 -V&+1 + $ (1 - V,) II COSQ ($4) 
p= F+f,,+ F (*{[ l-_l(l-VV,)lln(I-V,)+l+~(l-V~)}+ 

_t cgs(Q (1 - vp) o.oj 

r2=rzo[1 $p*c1cosQ] 

fn the case K = 2 the root s4 will be an integer. In that case 

b,l(“) 
Vp= - 

3YPoll 

_2+w+ 1)YPoo 
- %o O- Vo) f- ~nf~---‘C’dl 3 1 

PC") = bob”) { [ 1 - $ (1 - V,)]ln(l-V,)+l+ f (1 - V,)j 

&J) = 
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Fig. 1. Fig. 2. 

The final formulas for the solution will have the following form: 

y-=f vo+c1 1 
x (1 - V,) [ - In (I- V,)l) 

[ 
b,1(2) 

%=flr 3R,,+% (2) (1 - V,) 
I 

3cos fl sin fl [In (1 - VJ+l] 

~=p~(f)l(P,,[l-f(1-V~)]+y[~,~~~~+~~e(~~(3-cos~e-l)]x 

x{ [1 - f (1 - Vdl In (1 - VO)+ 1 + f (I- Vd}) 

(16) 

P = PI ( Ron + cc R,, [b,,$O) + +- b,,b2) (3~09 0 - I)] X 
YP00 

x{[l-~(~-VO)]~n(l-VO)+~+~(~-~O)}+ 

+ P ([cJO) + $ c0J2) (3~09 0 - I)] (1 - V,)“*) 

r2=rz0{1+p* [c,+~ca(3cosaO--I)]} 

Results of the calculation of ‘V o as a function of h/h for 8 = 0 and 

VGo for 8 = Go are presented in ihe form of graphs in F;g. 1; Fig. 2 
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shows the variation of R by solid lines and that of p by dashed lines. 
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